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1. Introduction

The multiple M2-brane model of Bagger-Lambert [1 – 3] and Gustavsson [4, 5] is defined

on Lie 3-algebras [6], which serve as the gauge symmetry algebras for the M2-brane world-

volume theory. For the consistency of these symmetries, we need to impose the funda-

mental identity on the Lie 3-algberas. But it turns out that the fundamental identities

are extremely restrictive. For quite some time the only known non-trivial example of Lie

3-algebras is the algebra A4 [7] with 4 generators and SO(4) symmetry, until many more

examples were given in [8]. In fact, Nambu-Poisson brackets [9 – 13] can be viewed as in-

finite dimensional Lie 3-algebras, and it can be used [14] to construct an M5-brane out of

infinitely many M2-branes.

While it is easy to find Nambu-Poisson brackets equipped with positive definite invari-

ant metrics, all finite-dimensional examples, except direct sums of A4 and trivial algebras,

have the salient feature that the invariant metric is never positive definite. It was thus con-

jectured in [8] (see also [15, 16]) that there exists no other finite dimensional Lie 3-algebras

with a positive definite metric. This conjecture was later proved in refs. [17, 18].1

While A4 corresponds to a certain fixed configuration of M2-branes in an M-fold [19 –

22], other Lie 3-algebras are needed for other backgrounds. Thus we either dismiss the BLG

model, or we have to accept Lie 3-algebras with zero-norm or negative-norm generators.

Some may worry that the existence of negative-norm generators in the Lie 3-algebra may

lead to ghosts in the BLG model. Thus a crucial test of the BLG model is whether it

1On the other hand, it was suggested [22] that the BLG model is to be studied only at the level of

equations of motion, which does not require the definition of an invariant metric. For other interesting

development on the multiple M2 theory, see for example [23], in addition to [8, 16 – 19].
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can make sense for a Lie 3-algebra with a metric which is not positive definite. Another

important task is to find Lie 3-algebras which will lead to U(N) gauge theories for arbitrary

N , in order to describe the configuration of N D2-branes when one of the spatial dimensions

is compactified.

In this paper, we first construct a Lie 3-algebra as an extension of an arbitrary Lie

algebra (section 2). We show that the BLG model based on this new example of Lie

3-algebra is parity invariant, and the zero-norm generator corresponds to Lagrange mul-

tipliers (section 3). Remarkably, the overall coefficient of the Lagrangian has the scaling

symmetry, and thus there is no free parameter in this theory. However, we also comment

(section 4) that in general one can treat the field components corresponding to certain par-

ticular generators as non-dyanmical parameters without breaking supersymmetry or gauge

symmetry. This new interpretation completely removes the ghost for our Lie 3-algebra.

Following Mukhi and Papageorgakis [19], we consider the reduction of M2 to D2-branes

(section 5). There is no ghost after compactification, and a spatial dimension completely

disappears, reducing the spacetime dimension from 11 to 10. We find that there are no

higher order terms in the D2-brane action, and the translation symmetry is manifestly

preserved.

In this approach of deriving multiple D2-branes from M2-branes through a finite di-

mensional Lie 3-algebra, the physical meaning of the extra generators are not very clear. In

section 6, we present the second derivation of D2 from M2. It is based on the construction

of M5-brane from M2 [14], where the infinite dimensional version of the Lie 3-algebra based

the Nambu-Poisson bracket on three dimensional space was used. It was shown that the

field content of BLG theory is mapped to those on M5-brane which include the self-dual

two-form field. We compactify one dimension in this internal 3 dimensional manifold and

wind one direction of M5-brane along this direction. We compute the BL Lagrangian in

this set-up and show that it gives rise to non-commutative D4-brane action where the

non-commutativity is infinitesimal. We show that it is possible to generalize the algebra

of Nambu-Poisson bracket by quantization to finite non-commutativity. When the inter-

nal space is T 2, by suitably choosing the non-commutativity parameter, one may obtain

U(N) symmetry on the D2-brane world volume. In this approach, there is no problem of

positivity of the norm from the beginning and it also provides a natural interpretation of

one of the extra generators as the winding mode of M5-brane worldvolume.

2. Lie 3-algebra from Lie algebra

For any given Lie algebra G

[T i, T j ] = f ij
kT

k (2.1)

with structure constants f ij
k and Killing form hij , we can define a corresponding Lie

3-algebra as follows. Let the generators of the Lie 3-algebra be denoted {T−1, T 0, T i}

(i = 1, · · · ,dim G), where T i’s are one-to-one corresponding to the generators of the Lie

– 2 –
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algebra G. The Nambu bracket is defined by

[T−1, T a, T b] = 0, (2.2)

[T 0, T i, T j ] = f ij
kT

k, (2.3)

[T i, T j, T k] = f ijkT−1, (2.4)

where a, b = −1, 0, 1, · · · ,dim G, and

f ijk ≡ f ij
lh

lk (2.5)

is totally anti-symmetrized.

One can check that the Nambu bracket, which is by definition skew-symmetric, satisfies

all fundamental identities, that is, for all a, b, c, d, e,

[T a, T b, [T c, T d, T e]] = [[T a, T b, T c], T d, T e] + [T c, [T a, T b, T d], T e] + [T c, T d, [T a, T b, T e]].

(2.6)

The requirement of invariance of the metric

〈[T a, T b, T c], T d〉 + 〈[T c, [T a, T b, T d]〉 = 0 (2.7)

implies that the metric has to be defined as

〈T−1, T−1〉 = 0, 〈T−1, T 0〉 = −1, 〈T−1, T i〉 = 0, (2.8)

〈T 0, T 0〉 = K, 〈T 0, T i〉 = 0, (2.9)

〈T i, T j〉 = hij , (2.10)

where K is an arbitrary constant and i, j = 1, · · · ,dim G.

Note that there is an algebra homomorphism

T 0 → T 0 + αT−1, (2.11)

that preserves the 3-algebra, but changes the metric by a shift of K:

K = 〈T 0, T 0〉 → K − 2α. (2.12)

Thus one can always choose T 0 such that

K = 0. (2.13)

This Lie 3-algebra has the following interesting properties.

1. The Lie 3-algebra reduces to the Lie algebra when one of the slots of the Nambu

bracket is taken by T 0. That is,

[T 0, T i, T j] = [T i, T j ], (2.14)

where the bracket on the right hand side is the Lie algebra bracket.

– 3 –
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2. The generator T 0 never appears on the right hand side of a Nambu bracket.

3. The generator T−1 is central, that is, the Nambu bracket vanishes whenever T−1

appears.

4. There are negative-norm generators. The norm of T 0 + αT 1 is K − 2α, which is

negative for sufficiently large α. T 1 is a zero-norm generator.

5. Generally speaking, the scaling of structure constants

fabc
d → g2fabc

d (2.15)

defines a new Lie 3-algebra, since the scaled structure constants must also satisfy all

the fundamental identities. We can scale the generators T a → g T a to absorb this

scaling, so that the structure constants are scaled back to their original values, but

this will result in a scaling of the metric hab → g2hab. However, for the particular

Lie 3-algebra under investigation, a scaling of the structure constants (2.15) can be

absorbed by the scaling

T 0 → g2 T 0, T−1 → g−2 T−1, T i → T i, (2.16)

which does not change the metric at all.

These properties will be important for the consideration of multiple M2-branes.

3. Bagger-Lambert lagrangian

In this section we apply the Lie 3-algebra constructed in the previous section to the Bagger-

Lambert action [1 – 3], which is a supersymmetric action proposed to describe multiple

M2-branes:

S = T2

∫

d3x L, (3.1)

where T2 is the M2-brane tension, and the Lagrangian density L is

L = −
1

2
〈DµXI ,DµXI〉 +

i

2
〈Ψ̄,ΓµDµΨ〉 +

i

4
〈Ψ̄,ΓIJ [XI ,XJ ,Ψ]〉 − V (X) + LCS. (3.2)

Here Dµ is the covariant derivative

(DµXI(x))a = ∂µXI
a − f cdb

aAµcd(x)XI
b , (3.3)

V (X) is the potential term defined by

V (X) =
1

12
〈[XI ,XJ ,XK ], [XI ,XJ ,XK ]〉, (3.4)

and the Chern-Simons term for the gauge potential is

LCS =
1

2
ǫµνλ

(

fabcdAµab∂νAλcd +
2

3
f cda

gf
efgbAµabAνcdAλef

)

. (3.5)
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The indices I, J,K = 3, · · · , 10, and they specify the transverse directions of M2-branes;

µ, ν = 0, 1, 2, describing the longitudinal directions. The indices a, b, c take values in

−1, 0, 1, · · · ,dim G for our Lie 3-algebra introduced in the previous section.

The mode expansions of the fields are

XI ≡ XI
aT a = XI

0T 0 + XI
−1T

−1 + X̂I , (3.6)

Ψ ≡ ΨaT
a = Ψ0T

0 + Ψ−1T
−1 + Ψ̂, (3.7)

Aµ ≡ AµabT
a ⊗ T b

= T−1 ⊗ Aµ(−1) − Aµ(−1) ⊗ T−1 + T 0 ⊗ Âµ − Âµ ⊗ T 0 + AµijT
i ⊗ T j, (3.8)

where

X̂ ≡ XiT
i, Ψ̂ ≡ ΨiT

i, (3.9)

Aµ(−1) ≡ Aµ(−1)aT
a, Âµ ≡ 2Aµ0iT

i. (3.10)

We also define

A′
µ ≡ Aµijf

ij
kT

k. (3.11)

We will see below that Aµ(−1) are completely decoupled in the BLG model, and XI
−1 and

Ψ−1 are Lagrange multipliers.

The action has N = 8 maximal SUSY in d = 3, and the SUSY transformations are

δXI
a = iǭΓIΨa, (3.12)

δΨa = DµXI
aΓµΓIǫ −

1

6
XI

b XJ
c XK

d f bcd
aΓ

IJKǫ, (3.13)

δÃµ
b
a = iǭΓµΓIX

I
c Ψdf

cdb
a, Ãµ

b
a ≡ Aµcdf

cdb
a. (3.14)

In terms of the modes, we have

δXI
0 = iǭΓIΨ0, (3.15)

δXI
−1 = iǭΓIΨ−1, (3.16)

δX̂I = iǭΓIΨ̂, (3.17)

δΨ0 = ∂µXI
0ΓµΓIǫ, (3.18)

δΨ−1 = (∂µXI
−1 − 〈A′

µXI〉)ΓµΓIǫ −
1

3
〈X̂IX̂JX̂K〉ΓIJKǫ, (3.19)

δΨ̂ = D̂µX̂IΓµΓIǫ −
1

2
XI

0 [X̂J , X̂K ]ΓIJKǫ, (3.20)

δÂµ = iǭΓµΓI(X
I
0 Ψ̂ − X̂IΨ0), (3.21)

δA′
µ = iǭΓµΓI [X̂

I , Ψ̂]. (3.22)

The gauge symmetry for the bosonic fields are written as,

δXI
a = Λcdf

cdb
aX

I
b , δÃµ

b
a = ∂µΛ̃b

a − Λ̃b
cÃµ

c
a + Ãµ

b
cΛ̃

c
a . (3.23)
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(The gauge transformation of Ψ is the same as XI .) In terms of the mode expansions, they

are

δXI
0 = 0, (3.24)

δXI
−1 = 〈Λ′, X̂I〉, (3.25)

δX̂I = [Λ̂, X̂I ], (3.26)

δÂµ = ∂µΛ̂ − [Âµ, Λ̂], (3.27)

δA′
µ = ∂µΛ′ − [Âµ,Λ′] − [A′

µ, Λ̂], (3.28)

where

Λ̂ = 2Λ0iT
i, Λ′ = Λijf

ij
kT

k. (3.29)

Plugging the mode expansions (3.6)–(3.8) into the Lagrangian (3.2), we get, up to total

derivatives,

L =

〈

−
1

2
(D̂µX̂I − A′

µXI
0 )2 +

i

4
¯̂
ΨΓµD̂µΨ̂ +

i

4
Ψ̄0Γ

µA′
µΨ̂ +

1

4
(XK

0 )2[X̂I , X̂J ]2 (3.30)

−
1

2
(XI

0 [X̂I , X̂J ])2 +
1

2
ǫµνλF̂µνA′

λ

〉

+ Lgh,

where

Lgh ≡ −

〈

∂µXI
0A′

µX̂I + (∂µXI
0 )(∂µXI

−1) −
i

2
Ψ̄−1Γ

µ∂µΨ0

〉

, (3.31)

and

D̂µXI ≡ ∂µX̂I − [Âµ, X̂I ], D̂µΨ ≡ ∂µΨ̂ − [Âµ, Ψ̂], F̂µν ≡ ∂µÂν − ∂νÂµ − [Âµ, Âν ].

(3.32)

This Lagrangian is invariant under the parity transformation

xµ → −xµ, Γµ → −Γµ, (3.33)

X̂I → X̂I , XI
0 → −XI

0 , XI
−1 → −XI

−1, (3.34)

Ψ̂ → Ψ̂, Ψ0 → −Ψ0, Ψ−1 → −Ψ−1, (3.35)

Âµ → −Âµ, A′
µ → A′

µ. (3.36)

Another symmetry of this model is the scaling transformation of the overall coefficient

of the Lagrangian. Usually a scaling of the structure constants is equivalent to a scaling of

the overall constant factor of the action through a scaling of all fields. This overall factor

is then an unfixed coupling, which is undesirable in M theory. However, the situation

is different for our new algebra. As we commented in the previous section, the scaling

of structure constants for the new algebra can be absorbed by a scaling of T 0 and T−1

without changing the metric. In other words, the scaling of the overall coefficient of the

Lagrangian is a symmetry. Explicitly, scaling (3.30) by an overall coefficient 1/g2 can be

absorbed by the field redefinition

X̂I → gX̂I , XI
0 → g−1XI

0 , XI
−1 → g3XI

−1, (3.37)

Ψ̂ → gΨ̂, Ψ0 → g−1Ψ0, Ψ−1 → g3Ψ−1, (3.38)

Âµ → Âµ, A′
µ → g2A′

µ. (3.39)
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Hence this Lagrangian has no free parameter at all!

Note also that XI
−1 and Ψ−1 appear only linearly in L−1, and thus they are Lagrange

multipliers. Their equations of motion are

∂2XI
0 = 0, Γµ∂µΨ0 = 0. (3.40)

Hence XI
0 and Ψ0 become classical fields, in the sense that off-shell fluctuations are excluded

from the path integral. Actually we can set

XI
0 = constant, Ψ0 = 0, (3.41)

without breaking the supersymmetry (3.15)–(3.22) nor gauge symmetry (3.15)–(3.22).

After we set (3.41), the Lagrangian is given by (3.30) without the last term Lgh. It is

remarkable that the ghost degrees of freedom associated with XI
−1 and Ψ−1 have totally

disappeared for this background. The resulting theory is clearly a well defined field theory

without ghosts.

The fact that the background (3.41) does not break any symmetry suggests an alter-

native viewpoint towards the BLG model. That is, we can change the definition of the

BLG model by defining XI
0 , Ψ0 as non-dynamical constant parameters fixed by (3.41). The

resulting model has as large symmetry as the original definition of the BLG model, but has

no ghosts. In this interpretation, the parameter XI
0 plays the role of coupling constant.

4. Reduction of 3-algebras in BLG model

From the example of the new 3-algebra described above, we see that in general there are

two kinds of 3-algebra generators that are special from the viewpoint of the BLG model.

First, if a generator TA can never be generated through a Nambu bracket (like T 0 in

our 3-algebra), i.e.

fabc
A = 0 ∀a, b, c, (4.1)

then Ãµ
b
A = 0, and it is straightforward to check that for the assignment

XI
A = constant, ΨA = 0 (4.2)

on the components corresponding to this generator TA, we have DµXI
A = 0 and the SUSY

transformations of the fixed components vanish

δXI
A = δΨA = 0 (4.3)

for arbitrary SUSY transformation parameter ǫ. Thus the complete SUSY is preserved

by (4.2).

For the gauge symmetry, if we define the gauge transformation parameter in (3.23) as

Λ̃b
a = Λcdf

cdb
a, (4.4)

then for arbitrary Λcd, we have all gauge transformations of the fixed components vanish.

Hence the gauge symmetry is preserved for arbitrary Λcd. However, there is the possibility

– 7 –
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that in some cases not all degrees of freedom in Λ̃b
a correspond to Λcd, and the correspond-

ing gauge symmetry may be broken, while all those which can be written in terms of Λcd

are preserved.

Similarly, if a generator TA is central (like T−1 in our 3-algebra), i.e.,

fAab
c = 0 ∀a, b, c, (4.5)

then the assignment

XIA = constant, ΨA = 0 (4.6)

preserves SUSY and gauge symmetry. Here the index A is raised using the invariant metric

XIA ≡ XI
a haA, etc. (4.7)

Furthermore, corresponding to the central element TA, the components

XI
A, ΨA, Ãµ

b
A (4.8)

cannot appear in the interaction terms. XI
A and ΨA can only appear in the kinetic terms,

while Ãµ
b
A is completely decoupled.

Since the metric components for central elements are not constrained by the require-

ment of invariance, we can always choose them to vanish

hAB = 0, (4.9)

and the components XI
A and ΨA can only appear linearly in the kinetic terms. They can

then be integrated out as Lagrange multipliers.

As the assignments (4.2) and (4.6) for two special types of generators preserve all SUSY

and gauge symmetries, one can take the viewpoint that these variables are non-dynamical

by definition. We have seen earlier that this interpretation removes the ghost from the

BLG model for our new 3-algebra.

5. From M2 to D2

Let us now consider the theory defined in section 3 for the particular background

XI
0 = vI , Ψ0 = 0, (5.1)

where v is a constant vector. Without loss of generality, for space-like vector v, we can

choose v to lie on the direction of X10

vI = v δI
10. (5.2)

As we mentioned in the previous section, fixing the fields XI
0 and Ψ0 by (5.1) removes the

ghost term Lgh from the Lagrangian. We can now integrate over A′ and find

Leff = −
1

2
(D̂µX̂A)2 +

1

4
v2[X̂A, X̂B ]2 +

i

4
¯̂
ΨΓµD̂µΨ̂ −

1

4v2
F̂ 2

µν , (5.3)

where A,B = 3, · · · , 9.
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It is very interesting to note that all degrees of freedom in the spatial coordinate X10

have totally disappeared from both the kinetic term and the potential term of the action. It

is fully decoupled from the Lagrangian for the particular background under consideration.

Let us now recall that when M theory is compactified on a circle, it is equivalent to type

IIA superstring theory and M2-branes are matched with D2-branes. The background (5.1)

considered above is reminiscent of the novel Higgs mechanism in [19]. It was originally

proposed to describe the effect of compactification of X10, and later found to correspond

to a large k limit of a Z2k M-fold [20, 21].

The M theory parameters can be converted to the parameters of type IIA superstring

theory via

R = gsls, and Ts ≡
1

2πα′
= 2πRT2. (5.4)

The Lagrangian (5.3) is thus exactly the same as the low energy effective action of multiple

D2-branes if v is given by the perimeter of the compactified dimension

v = 2πR. (5.5)

Despite the similarity, there are a few features of our model that are different from [19]:

1. The action (5.3) does not have higher order terms.

2. The translation symmetry of the center of mass coordinates corresponding to the

u(1) factor of G is manifest.

These are considered as stronger signatures of the reduction of M2 to D2 due to a com-

pactification of the M theory on S1.

As the D2-brane is dual to M2-brane, the 11-th dimension of the M theory is not lost

when X10 disappears. It is dual to the gauge field degrees of freedom on the D2-brane [25].

6. From M5 to D2

In this section, we present a very different derivation of D2-brane from M2. It is based

on the derivation of M5-brane from BLG theory [14]. We consider a three dimensional

manifold N equipped with the Nambu-Poisson structure. By choosing the appropriate

local coordinates yµ̇ (µ̇ = 1̇, 2̇, 3̇), one may construct an infinite dimensional Lie 3-algebra

from the basis of functions on N , χa (a = 1, 2, 3, · · · ) as,

{

χa, χb, χc
}

=
∑

d

fabc
d χd , {f1, f2, f3} =

∑

µ̇,ν̇,λ̇

ǫµ̇ν̇λ̇

∂f1

∂yµ̇

∂f2

∂yν̇

∂f3

∂yλ̇
. (6.1)

From the property of the Nambu-Poisson structure, this 3-algebra satisfies the fundamental

identity with positive definite and invariant metric for the generators,

〈χa, χb〉 =

∫

N

d3yχa(y)χb(y) . (6.2)

– 9 –
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By the summation of these generators with the fields in BL action,

XI(x, y) =
∑

a

XI
a(x)χa(y) , (6.3)

Ψ(x, y) =
∑

a

Ψa(x)χa(y) , (6.4)

Aµ(x, y, y′) =
∑

a,b

Aµab(x)χa(y)χb(y′), (6.5)

we obtain the fields on the six dimensional manifold M×N where M is the world volume

of the original membrane. We note that the gauge field Aµ(x, y, y′) appears to depends

on two points on N . However, if we examine the action carefully, one can show that it

depends on Aµ(x, y, y′) only through [24],

bµν̇(x, y) =
∂

∂y′ν̇
Aµ(x, y, y′)

∣

∣

∣

∣

y′=y

. (6.6)

Therefore the action can be written in terms of the local fields. It was shown that the BL

Lagrangian, after suitable field redefinitions, describes the field theory on M5 [14] which

includes the self-dual two-form field. While the analysis in [14] is at the level of quadratic

order, we will present here the nonlinear action which includes all the terms in BL action.

This is based on a technical development in [24] where the exact analysis including the

nonlinear terms are given. Because the full detail of the computation is given in [24], we

present only the result and its implication here.

In order to obtain D4 from M2, we have to wind X 3̇ around the compact y3̇ direc-

tion [26] and impose the constraints that the other fields do not depend on y3̇. Other than

that, we use the same field configuration [14]

X 3̇ = y3̇ , (6.7)

Xα̇ = yα̇ + ǫ
α̇β̇

a
β̇
(x, y) , (6.8)

aµ(x, y) = bµ3̇(x, y) , (6.9)

ãλ(x, y) = ǫ
α̇β̇

∂α̇b
λβ̇

, (6.10)

∂3̇X
i = ∂3̇Ψ = ∂3̇aβ̇

= ∂3̇aµ = ∂3̇ãλ = 0 . (6.11)

Here we use the indices α̇, β̇, · · · to denote 1̇, 2̇ such that the world volume index of D4 is

µ and α̇. We use the notation i = 1, · · · , 5 for the transverse directions. We repeat the

same computation as in [14] but here we include the nonlinear terms. It turns out that bµν̇

appears only through aµ and ãµ.

Various terms of the D4 action can be computed [14, 24] straightforwardly. First the

potential term becomes

−
1

12
〈[XI ,XJ ,XK ]2〉 =

∫

N

d3y

(

−
1

2
− F1̇2̇ −

1

4
F

α̇β̇
2 −

1

4
Dα̇Xi

2 −
1

4
{Xi,Xj}

2

)

, (6.12)

where

Fα̇β̇ := ∂α̇aβ̇ − ∂β̇aα̇ +
{

aα̇, aβ̇

}

, Dα̇Xi = ∂α̇Xi + {aα̇,Xi} . (6.13)
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While we expect to have the Abelian U(1) gauge field on the world volume, we have the

Poisson bracket

{f, g} =
∑

α̇,β̇=1̇,2̇

ǫα̇β̇∂α̇f∂β̇g (6.14)

everywhere. It implies that we can not escape from the noncommutativity in N direction

as long as we start from BL Lagrangian. The Chern-Simons term (3.5) becomes, after

partial integrations,

LCS = −
1

2
ǫµνλ

∫

d3y ãµ(x, y)Fνλ(x, y) , Fµν := ∂µaν − ∂νaµ + {aµ, aν} . (6.15)

Finally the kinetic terms for XI and the fermion become

−
1

2
〈(DµXI)2〉 = −

1

2

∫

N

d3y
(

Fµα̇
2 + ã2

µ + DµXi
2
)

, (6.16)

i

2
〈Ψ̄,ΓµDµΨ〉+

i

4
〈Ψ̄,ΓIJ [XI ,XJ ,Ψ]〉 =

i

2

∫

N

d3y
(

Ψ̄ΓµDµΨ+Ψ̄Γα̇Dα̇Ψ+Ψ̄Γi

{

Xi,Ψ
})

,

where

Fµα̇ := ∂µaα̇ − ∂α̇aµ + {aµ, aα̇} , DµXi = ∂µ + {aµ,Xi} , (6.17)

DµΨ = ∂µΨ + {aµ,Ψ} , Dα̇Ψ = ∂α̇Ψ + {aα̇,Ψ} , (6.18)

Γα̇ =
∑

β̇

Γ3̇β̇
ǫ
β̇α̇

, Γi = Γ3̇i . (6.19)

We note that the field ãµ does not have the kinetic term and can be integrated out exactly.

The integrand does not depend on y3̇ so we obtain overall factor of 2πR (R is the radius

of the compactified direction) after the integration over y3̇.

We note that in the computation, there are no ambiguities associated with the inner

product. After integrating out the auxiliary field ãµ, one arrives at the D4-brane action

(after neglecting the constant term and the total derivative term)

S = 2πR

∫

d5x

(

−
1

4
Fµν

2 −
1

2
DµXi2 +

i

2
Ψ̄ΓµDµΨ −

1

4

{

Xi,Xj
}2

+
i

2
Ψ̄Γi

{

Xi,Ψ
}

)

.

(6.20)

Here µ, ν, · · · are the integrated indices for µ, ν and α̇, β̇ run from 0 to 4. As already

mentioned, Aµ = aµ, aα̇ is not exactly the commutative U(1) gauge field but it includes

noncommutativity in µ = 3, 4 directions (originally α̇ directions). The definition of the

field strength and the covariant derivatives are, of course,

Fµν = ∂µAν − ∂νAµ +
{

Aµ, Aν

}

,

DµXi = ∂µXi +
{

Aµ,Xi
}

, DµΨ = ∂µXi +
{

Aµ,Ψ
}

. (6.21)

The origin of the noncommutativity is obvious. It comes from the Nambu-Poisson

bracket where the space of the function is truncated to

{

y3
}

∪ C(N ′) . (6.22)
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Here we decompose N into y3̇ direction and N ′ described by y1̇,2̇. The Nambu-Poisson

bracket becomes (for fi(y
1̇, y2̇) ∈ C(N ′))

{

y3, f1, f2

}NP
= {f1, f2} , {f1, f2, f3}

NP = 0 , others = 0 . (6.23)

The commutator terms in the lagrangian come from this algebra. This algebra turns out to

be identical to Lie 3-algebra (2.2–2.4) if we put T−1 to zero. The generator that corresponds

to T 0 is y3̇, which describes the winding of M5 world volume around S1.

The Poisson bracket {f, g} can be obtained from the matrix algebra when the matrix

size N is infinite. By using the standard argument (see for example [27]), it is easy to

claim that the D4 action which we just obtained can be regarded as describing an infinite

number of D2-branes.

However, in order to obtain the finite N theory on D2-brane, this is not sufficient.

We need to quantize the Nambu bracket. In general, the quantum Nambu bracket is very

difficult to define. However, for the truncated Hilbert space (6.22), this is actually possible.

We deform the Nambu-Poisson bracket by,

[f1, f2, f3]
QN =

3
∑

i,j,k=1

ǫijk(fi ⋆ fj)∂3fk (6.24)

where ⋆ is the Moyal product,

(f ⋆ g)(y1̇, y2̇) = exp(iǫα̇β̇θ∂yα̇∂
zβ̇)f(y1̇, y2̇)g(z1̇, z2̇)|z=y . (6.25)

It does not satisfy the fundamental identity when we consider C(N ) as a whole. If we

restrict the generators to (6.22), we can recover the fundamental identity. If we take N ′ as

T 2 and quantize θ suitably, the quantum T 2 reduces to the U(N) algebra,

UV = V Uω, ωN = 1 , UN = V N = 1 . (6.26)

In this case the quantum Nambu-Poisson bracket reduces to the one-generator extension

of U(N) algebra

[T 0, T i, T j ] = f ij
kT

k , [T i, T j , T k] = 0 . (6.27)

The multiple D2 action can be obtained by expanding the functions in y1̇,2̇ directions by

U, V and replacing the covariant derivative Dα̇ by the commutators

Dα̇Φ → [Xα̇,Φ] (6.28)

for general Φ.

In this way, by taking a path M2 → M5 → D4 → D2, one can obtain the multiple D2

theory without touching the problem of the negative-norm state.
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7. Conclusion

In this paper, we study two approaches to obtain multiple D2-brane action from the BLG

theory. In the first approach, one defines Lie 3-algebra which contains generators of a given

Lie algebra. Such an extension inevitably contains generators with negative norms. We

argued that by suitably choosing such extension, one might restrict the field associated

with it to constant or zero while keeping almost all of the symmetry of BLG theory. Such

truncation leads to the symmetry breaking mechanism of [19] and generates the standard

kinetic term for the gauge fields on the multiple D2-brane worldvolume.

In [8], we have presented many examples of Lie 3-algebras which satisfy the funda-

mental identity. The algebra which we consider here is a generalization of one of them. It

is quite interesting to conjecture that similar mechanism which we consider here may be

applied to other examples by restricting the fields associated with the null/negative norm

generators to constants. Such theories may not describe M2 or D2 but would give a new

insight into M theory dynamics.

In the second derivation of multiple D2-brane, we found that the extra generator has

a simple physical origin, the winding of M5-brane around S1 which defines the reduction

from M theory to the type IIA theory. One may provide a similar geometrical origin to

other Lie 3-algebras.

We also commented that to have finite N theory from M5, we need quantization of the

Nambu-Poisson bracket. This is trivially possible in our case for D4-branes since we have

reduced the Namb-Poisson bracket into the usual Poisson bracket. In general, however, we

need to consider the quantization of full Nambu-Poisson bracket in the full function space.

We hope that the many studies in the past [28, 10, 29] would provide a breakthrough

toward this direction.

Note added. When we have almost finished the paper, there appeared a paper [30]

which overlaps considerably on the first proposal of this paper for deriving D2 from M2 in

the BLG model.
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